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Abstract

Maintaining germline genome integrity is essential and enormously complex. Hundreds of proteins
are involved in DNA replication and proofreading, and hundreds more are mobilized to repair DNA
damage [1]. While loss-of-function mutations in any of the genes encoding these proteins might lead
to elevated mutation rates, mutator alleles have largely eluded detection in mammals.

DNA replication and repair proteins often recognize particular sequence motifs or excise lesions at
speci�c nucleotides. Thus, we might expect that the spectrum of de novo mutations — that is, the
frequency of each individual mutation type (C>T, A>G, etc.) — will di�er between genomes that harbor
either a mutator or wild-type allele at a given locus. Previously, we used quantitative trait locus
mapping to discover candidate mutator alleles in the DNA repair gene Mutyh that increased the C>A
germline mutation rate in a family of inbred mice known as the BXDs [2,3].

In this study we developed a new method, called “aggregate mutation spectrum distance,” to detect
alleles associated with mutation spectrum variation. By applying this approach to mutation data from
the BXDs, we con�rmed the presence of the germline mutator locus near Mutyh and discovered an
additional C>A mutator locus on chromosome 6 that overlaps Ogg1, a DNA glycosylase involved in the
same base-excision repair network as Mutyh [4]. The e�ect of a chromosome 6 mutator allele
depended on the presence of a mutator allele near Mutyh, and BXDs with mutator alleles at both loci
had even greater numbers of C>A mutations than those with mutator alleles at either locus alone. Our
new methods for analyzing mutation spectra reveal evidence of epistasis between germline mutator
alleles, and may be applicable to mutation data from humans and other model organisms.

Introduction

Germline mutation rates re�ect the complex interplay between DNA proofreading and repair
pathways, exogenous sources of DNA damage, and life-history traits. For example, parental age is an
important determinant of mutation rate variability; in many mammalian species, the number of
germline de novo mutations observed in o�spring increases as a function of paternal and maternal
age [5,6,7,8,9]. Rates of germline mutation accumulation are also variable across human families
[6,10], likely due to either genetic variation or di�erences in environmental exposures. Although
numerous protein-coding genes contribute to the maintenance of genome integrity, genetic variants
that increase germline mutation rates, known as mutator alleles, have proven di�cult to discover in
mammals.

The dearth of observed germline mutators in mammalian genomes is not necessarily surprising, since
alleles that lead to elevated germline mutation rates would likely have deleterious consequences and
be purged by negative selection if their e�ect sizes are large [11]. Moreover, germline mutation rates
are relatively low, and direct mutation rate measurements require whole-genome sequencing data
from both parents and their o�spring. As a result, large-scale association studies — which have been
used to map the contributions of common genetic variants to many complex traits — are not
currently well-powered to investigate the polygenic architecture of germline mutation rates [12].

Despite these challenges, less traditional strategies have been used to identify a small number of
mutator alleles in humans, macaques [13], and mice. By focusing on families with rare genetic
diseases, a recent study discovered two mutator alleles that led to signi�cantly elevated rates of de
novo germline mutation in human genomes [14]. Other groups have observed mutator phenotypes in
the germlines and somatic tissues of adults who carry cancer-predisposing inherited mutations in the
POLE/POLD1 exonucleases [15,16]. Candidate mutator loci were also found by identifying human



haplotypes from the Thousand Genomes Project with excess counts of derived alleles in genomic
windows [17].

In mice, a germline mutator allele was recently discovered by sequencing a large family of inbred mice
[2]. Commonly known as the BXDs, these recombinant inbred lines (RILs) were derived from either F2
or advanced intercrosses of C57BL/6J and DBA/2J, two laboratory strains that exhibit signi�cant
di�erences in their germline mutation spectra [3,18]. The BXDs were maintained via brother-sister
mating for up to 180 generations, and each BXD therefore accumulated hundreds or thousands of
germline mutations on a nearly-homozygous linear mosaic of parental B and D haplotypes. Due to
their husbandry in a controlled laboratory setting, the BXDs were largely free from confounding by
environmental heterogeneity, and the e�ects of selection on de novo mutations were attenuated by
strict inbreeding [19].

In this previous study, whole-genome sequencing data from the BXD family were used to map a
quantitative trait locus (QTL) for the C>A mutation rate [2]. Germline C>A mutation rates were nearly
50% higher in mice with D haplotypes at the QTL, likely due to genetic variation in the DNA glycosylase
Mutyh that reduced the e�cacy of oxidative DNA damage repair. Pathogenic variants of Mutyh also
appear to act as mutators in normal human germline and somatic tissues [18,20]. Importantly, the
QTL did not reach genome-wide signi�cance in a scan for variation in overall germline mutation rates,
which were only modestly higher in BXDs with D alleles, demonstrating the utility of mutation
spectrum analysis for mutator allele discovery. Close examination of the mutation spectrum is likely to
be broadly useful for detecting mutator alleles, as genes involved in DNA proofreading and repair
often recognize particular sequence motifs or excise speci�c types of DNA lesions [21]. Mutation
spectra are usually de�ned in terms of -mer nucleotide context; the 1-mer mutation spectrum, for
example, consists of 6 mutation types after collapsing by strand complement (C>T, C>A, C>G, A>T,
A>C, A>G), while the 3-mer mutation spectrum contains 96 (each of the 1-mer mutations partitioned
by trinucleotide context).

Although mutation spectrum analysis can enable the discovery of mutator alleles that a�ect the rates
of speci�c mutation types, early implementations of this strategy have su�ered from a few drawbacks.
For example, performing association tests on the rates or fractions of every -mer mutation type can
quickly incur a substantial multiple testing burden. Since germline mutation rates are generally quite
low, estimates of -mer mutation type frequencies from individual samples can also be noisy and
imprecise. Moreover, inbreeding duration can vary considerably across samples in populations of
RILs; for example, some BXDs were inbred for only 20 generations, while others were inbred for
nearly 200. As a result, the variance of individual -mer mutation rate estimates in those populations
will be much higher than if all samples were inbred for the same duration. We were therefore
motivated to develop a statistical method that could overcome the sparsity of de novo mutation
spectra, eliminate the need to test each -mer mutation type separately, and enable sensitive
detection of alleles that in�uence the germline mutation spectrum.

Here, we present a new mutation spectrum association test, called “aggregate mutation spectrum
distance,” that minimizes multiple testing burdens and mitigates the challenges of sparsity in de novo
mutation datasets. We leverage this method to re-analyze germline mutation data from the BXD
family and �nd compelling evidence for a second mutator allele that was not detected using previous
approaches. The new allele appears to interact epistatically with the mutator that was previously
discovered in the BXDs, further augmenting the C>A germline mutation rate in a subset of inbred
mice. Our observation of epistasis suggests that mild DNA repair de�ciencies can compound one
another, as mutator alleles chip away at the redundant systems that collectively maintain germline
integrity.

Results
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A novel method for detecting mutator alleles

We developed a statistical method, termed “aggregate mutation spectrum distance” (AMSD), to detect
loci that are associated with mutation spectrum variation in recombinant inbred lines (RILs) (Figure 1;
Materials and Methods). Our approach leverages the fact that mutator alleles often leave behind
distinct and detectable impressions on the mutation spectrum, even if they increase the overall
mutation rate by a relatively small amount. Given a population of haplotypes, we assume that each
has been genotyped at the same collection of biallelic loci and that each harbors de novo mutations
which have been partitioned by -mer context (Figure 1). At every locus, we calculate a cosine distance
between the aggregate mutation spectra of haplotypes that inherited either parental allele. Using
permutation tests, we then identify loci at which those distances are larger than what we’d expect by
random chance. To account for polygenic e�ects on the mutation process that might be shared
between BXDs, we also regress the cosine distance at each marker against the genetic similarity
between haplotype groups, and assess signi�cance using the �tted residuals (which we call the
“adjusted” cosine distances) (Materials and Methods).

Using simulated data, we �nd that our method’s power is primarily limited by the initial mutation rate
of the -mer mutation type a�ected by a mutator allele and the total number of de novo mutations
used to detect it (Figure 1-�gure supplement 1). Given 100 haplotypes with an average of 500 de novo
germline mutations each, AMSD has approximately 90% power to detect a mutator allele that
increases the C>A de novo mutation rate by as little as 20%. However, the approach has less than 20%
power to detect a mutator of identical e�ect size that augments the C>G mutation rate, since C>G
mutations are expected to make up a smaller fraction of all de novo germline mutations to begin with.
Simulations also demonstrate that our approach is well-powered to detect large-e�ect mutator alleles
(e.g., those that increase the mutation rate of a speci�c -mer by 50%), even with a relatively small
number of mutations per haplotype (Figure 1-�gure supplement 1). Both AMSD and traditional
quantitative trait locus (QTL) mapping have similar power to detect alleles that augment the rates of
individual 1-mer mutation types (Figure 1-�gure supplement 2), but AMSD has a number of potential
advantages for mutator allele discovery. For example, we �nd that AMSD is better-powered than QTL
mapping when the number of simulated de novo mutations is allowed to vary (by a factor of 20)
across haplotypes (Figure 1-�gure supplement 3) and when mutator allele frequencies are less than
50% (Figure 1-�gure supplement 4). However, we also caution that many of the parameters used in
our simulations are speci�c to the BXD mice (e.g., numbers of haplotypes, average numbers of
mutations, expected allele frequencies at markers), and do not necessarily re�ect the power of AMSD
on other populations.
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Figure 1:  Overview of aggregate mutation spectrum distance method for discovering mutator alleles. a) A
population of four haplotypes has been genotyped at three informative markers (  through ); each haplotype also
harbors unique de novo germline mutations. In practice, de novo mutations are partitioned by -mer context; for
simplicity in this toy example, de novo mutations are simply classi�ed into two possible mutation types (grey squares
represent C>(A/T/G) mutations, while grey triangles represent A>(C/T/G) mutations). b) At each informative marker ,
we calculate the total number of each mutation type observed on haplotypes that carry either parental allele (i.e., the
aggregate mutation spectrum) using all genome-wide de novo mutations. For example, haplotypes with A (orange)
genotypes at  carry a total of three “triangle” mutations and �ve “square” mutations, and haplotypes with B (green)
genotypes carry a total of six triangle and two square mutations. We then calculate the cosine distance between the two
aggregate mutation spectra, which we call the “aggregate mutation spectrum distance.” Cosine distance can be de�ned
as , where  is the angle between two vectors; in this case, the two vectors are the two aggregate spectra. We
repeat this process for every informative marker . c) To assess the signi�cance of any distance peaks in b), we
perform permutation tests. In each of  permutations, we shu�e the haplotype labels associated with the de novo
mutation data, run a genome-wide distance scan, and record the maximum cosine distance encountered at any locus in
the scan. Finally, we calculate the  percentile of the distribution of those maximum distances to obtain a genome-
wide cosine distance threshold at the speci�ed value of .

Re-identifying a mutator allele on chromosome 4 in the BXDs

We applied our aggregate mutation spectrum distance method to 117 BXDs (Materials and Methods)
with a total of 65,552 de novo germline mutations [2]. Using mutation data that were partitioned by 1-
mer nucleotide context, we discovered a locus on chromosome 4 that was signi�cantly associated
with mutation spectrum variation (Figure 2a; maximum adjusted cosine distance of 1.20e-2 at marker
ID rs27509845 ; position 118.28 Mbp in GRCm38/mm10 coordinates; 90% bootstrap con�dence
interval from 114.79 - 118.75 Mbp).
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Figure 2:  Results of aggregate mutation spectrum distance scans in the BXDs. a) Adjusted cosine distances
between aggregate 1-mer de novo mutation spectra on BXD haplotypes (n = 117 haplotypes; 65,552 total mutations)
with either D or B alleles at 7,128 informative markers. Cosine distance threshold at p = 0.05 was calculated by
performing 10,000 permutations of the BXD mutation data, and is shown as a dotted grey line. b) Adjusted cosine
distances between aggregate 1-mer de novo mutation spectra on BXD haplotypes with D alleles at rs27509845  (n = 66
haplotypes; 42,171 total mutations) and either D or B alleles at 7,063 informative markers. Cosine distance threshold at
p = 0.05 was calculated by performing 10,000 permutations of the BXD mutation data, and is shown as a dotted grey
line. c) Adjusted cosine distances between aggregate 1-mer de novo mutation spectra on BXD haplotypes with B alleles



at rs27509845  (n = 44 haplotypes; 22,645 total mutations) and either D or B alleles at 7,063 informative markers.
Cosine distance threshold at p = 0.05 was calculated by performing 10,000 permutations of the BXD mutation data, and
is shown as a dotted grey line.

Using quantitative trait locus (QTL) mapping, we previously identi�ed a nearly-identical locus on
chromosome 4 that was signi�cantly associated with the C>A germline mutation rate in the BXDs [2].
This locus overlapped 21 protein-coding genes that were annotated by the Gene Ontology as being
involved in “DNA repair,” but only one of those genes contained nonsynonymous di�erences between
the two parental strains: Mutyh. Mutyh encodes a protein involved in the base-excision repair of 8-
oxoguanine (8-oxoG), a DNA lesion caused by oxidative damage, and prevents the accumulation of
C>A mutations [4,22,23]. C>A germline mutation fractions are nearly 50% higher in BXDs that inherit D
genotypes at marker ID rs27509845  (the marker at which we observed the highest adjusted cosine
distance on chromosome 4) than in those that inherit B genotypes (Figure 3) [2].

An additional germline mutator allele on chromosome 6

After con�rming that AMSD could recover the mutator locus overlapping Mutyh, we tested its ability
to identify additional mutator loci in the BXDs. To eliminate potential confounding of the mutation
spectrum landscape by the large-e�ect mutator locus on chromosome 4, we performed AMSD scans
that were conditional on the presence of either D or B alleles at rs27509845 . We also hypothesized
that such conditioning might reveal epistatic interactions between alleles at the chromosome 4 locus
and mutator alleles elsewhere in the genome. Speci�cally, we divided the BXDs into those with either
D (n = 66) or B (n = 44) genotypes at rs27509845  (n = 7 BXDs were heterozygous) and ran an
aggregate mutation spectrum distance scan using each group separately (Figure 2b-c). We excluded
the BXD68 RIL from these scans, since we previously found that BXD68 harbors a strain-private C>A
mutator allele of even larger e�ect [2].

Using the BXDs with D genotypes at rs27509845 , we identi�ed a locus on chromosome 6 that was
signi�cantly associated with mutation spectrum variation (Figure 2b; maximum adjusted cosine
distance of 3.69e-3 at marker rs46276051 ; position 111.27 Mbp in GRCm38/mm10 coordinates; 90%
bootstrap con�dence interval from 95.01 - 114.02 Mbp). This signal was speci�c to BXDs with D
genotypes at the rs27509845  locus, as we did not observe any new mutator loci after performing an
AMSD scan using BXDs with B genotypes at rs27509845  (Figure 2c). The peak markers on
chromosome 4 and 6 did not exhibit strong linkage disequilibrium (  = 4e-5). We also performed
QTL scans for the fractions of each 1-mer mutation type using the same mutation data, but none
produced a genome-wide signi�cant log-odds score at any locus (Figure 2-�gure supplement 1;
Materials and Methods).

We queried the region surrounding the top marker on chromosome 6 (+/- the 90% bootstrap
con�dence interval) and discovered 64 protein-coding genes, of which four were annotated with a
Gene Ontology (GO) [24,25] term related to “DNA repair”: Fancd2, Ogg1, Setmar, and Rad18. None of
the remaining genes were annotated with a cellular function that would obviously contribute to a
germline mutator phenotype; however, many of these GO annotations are imperfect and/or
incomplete. Although we focus our analysis on DNA repair genes, it remains possible that other genes
within the con�dence interval could underlie the C>A mutator phenotype we identi�ed in the BXDs.

Of the annotated DNA repair genes within the con�dence interval, two harbored nonsynonymous
di�erences between the parental C57BL/6J and DBA/2J strains (Table 1). Ogg1 encodes a key member
of the base-excision repair response to oxidative DNA damage (a pathway that also includes Mutyh),
and in mice Setmar encodes a SET domain-containing histone methyltransferase; both Ogg1 and
Setmar are expressed in mouse gonadal cells. Because the bootstrap can exhibit poor coverage in
QTL mapping studies [26], we also scanned an interval +/- 5 Mbp from the peak AMSD marker on
chromosome 6 for additional candidate genes. Although the choice of a 10 Mbp interval is somewhat

R2



arbitrary, the interval does contain a plausible candidate: Mbd4, a protein-coding gene involved in
base excision repair that also harbors a non-synonymous di�erence between the BXD parental strains
(Table 1).

Table 1:  Nonsynonymous mutations in DNA repair genes near the chr6 peak

Gene name
Ensembl

transcript
name

Nucleotide
change

Amino acid
change

Position in
GRCm38/mm1
0 coordinates

PhyloP
conservation

score

SIFT
prediction

Setmar
ENSMUST0000
0049246

C>T p.Leu103Phe
chr6:108,075,8
53

0.422
0.0
(intolerant/del
eterious)

Setmar
ENSMUST0000
0049246

T>G p.Ser273Arg
chr6:108,076,3
65

-0.355
0.3
(tolerant/benig
n)

Ogg1
ENSMUST0000
0032406

A>G p.Thr95Ala
chr6:113,328,5
10

-0.016
0.84
(tolerant/benig
n)

Mbd4
ENSMUST0000
0032469

C>T p.Asp129Asn
chr6:115,849,6
44

2.28
0.02
(intolerant/del
eterious)

We also considered the possibility that expression quantitative trait loci (eQTLs), rather than
nonsynonymous mutations, could contribute to the C>A mutator phenotype associated with the locus
on chromosome 6. Using GeneNetwork [27] we mapped eQTLs for the �ve aforementioned DNA
repair genes (as well as Mbd4) in a number of tissues, though we did not have access to expression
data from germline cells. Notably, D alleles near the cosine distance peak on chromosome 6 were
signi�cantly associated with decreased Ogg1 expression in kidney, liver, hippocampus, and
gastrointestinal tissues (Table supplement 1). Although these cis-eQTLs are challenging to interpret
(given their tissue speci�city and our lack of access to germline expression data), the presence of
strong-e�ect cis-eQTLs for Ogg1 suggests that the C>A mutator phenotype observed in the BXDs may
be mediated by regulatory, rather than protein-altering, variants.

Finally, we queried a dataset of structural variants (SVs) identi�ed via high-quality, long-read assembly
of inbred laboratory mouse strains [28] and found 176 large insertions or deletions (>100 bp) within
the 90% bootstrap con�dence interval around the cosine distance peak on chromosome 6; none
overlapped the exonic sequences of protein-coding genes.

One protein-coding gene involved in DNA repair (Rad18) harbored an intronic deletion within the
interval on chromosome 6 (chr6:112,629,618-112,636,619); however, additional experimental
evidence will be needed to probe the functional impact of this structural variant.

Evidence of epistasis between germline mutator alleles

Next, we more precisely characterized the e�ects of the chromosome 4 and 6 mutator alleles on
mutation spectra in the BXDs. To pinpoint the mutation type(s) that underlied the signi�cant cosine
distance peak on chromosome 6, we compared the aggregate counts of each 1-mer mutation type
(plus CpG>TpG) on BXD haplotypes with D genotypes at rs27509845  and either D or B genotypes at 
rs46276051 . We found that C>A mutations were signi�cantly enriched on BXD haplotypes with D

genotypes at the chromosome 6 mutator locus, relative to those with B genotypes (  statistic =
85.36, p = 2.48e-20). On average, C>A germline mutation fractions were signi�cantly higher in BXDs
with D alleles at both mutator loci than in BXDs with D alleles at either locus alone (Figure 3a and 3-
�gure supplement 1). Among BXDs with B alleles at the locus overlapping Mutyh, those with D alleles
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on chromosome 6 did not exhibit signi�cantly elevated C>A mutation fractions (Figure 3a). After
controlling for inbreeding duration, we observed that C>A de novo mutation counts were always
highest in BXDs with D alleles at both mutator loci (Figure 3b). After 100 generations of inbreeding,
BXDs with D alleles at both mutator loci were predicted to have 238.9 C>A mutations (95% CI: 231.4 -
246.4), about 20% more than the 199.0 mutations (95% CI: 193.3 - 204.7) predicted in those with D and
B alleles at the chromosome 4 and chromosome 6 loci, respectively (Figure 3b).

We also used SigPro�lerExtractor [29] to assign the germline mutations in each BXD to single-base
substitution (SBS) mutation signatures from the COSMIC catalog [30]. Mutation signatures often
re�ect speci�c exogenous or endogenous sources of DNA damage, and the proportions of mutations
attributable to particular SBS signatures can suggest a genetic or environmental etiology. The SBS1,
SBS5, and SBS30 mutation signatures were active in nearly all BXDs, regardless of genotypes at the
chromosome 4 and 6 mutator loci (Figure 3c). However, the SBS18 signature, which is dominated by
C>A mutations and likely re�ects unrepaired DNA damage from reactive oxygen species, was almost
exclusively active in mice with D alleles at the chromosome 4 locus; the highest SBS18 activity was
observed in mice with D alleles at both mutator loci (Figure 3c). SBS18 activity was lowest in mice with
D alleles at the chromosome 6 mutator locus alone (Figure 3c), further demonstrating that D alleles at
this locus are not su�cient to cause a mutator phenotype.

To more formally test for statistical epistasis, we �t a generalized (Poisson) linear model predicting
counts of C>A mutations in each BXD as a function of genotypes at rs27509845  and rs46276051
(the markers with the largest adjusted cosine distance at the two mutator loci); the model also
accounted for di�erences in inbreeding duration and sequencing coverage between the BXDs
(Materials and Methods). A model that included an interaction term between genotypes at the two
markers �t the data signi�cantly better than a model including only additive e�ects (p = 7.92e-7;
Materials and Methods), indicating that the combined e�ects of D genotypes at both loci exceeded the
sum of marginal e�ects of D genotypes at either locus alone.



Figure 3:  BXD mutation spectra are a�ected by alleles at both mutator loci. a) C>A de novo germline mutation
fractions in BXDs with either D or B genotypes at markers rs27509845  (chr4 peak) and rs46276051  (chr6 peak).
Distributions of C>A mutation fractions were compared with two-sided Mann-Whitney U-tests; annotated p-values are
uncorrected. B-B  vs.  B-D  comparison: U-statistic = 149.0, p = 7.58e-2; B-D  vs D-D  comparison: U-statistic = 21.0, p =
2.61e-8; D-B  vs D-D  comparison: U-statistic = 232.5, p = 6.99e-5. b) The count of C>A de novo germline mutations in
each BXD was plotted against the number of generations for which it was inbred. Lines represent predicted C>A counts
in each haplotype group from a generalized linear model (Poisson family, identity link), and shading around each line
represents the 95% con�dence interval. c) Germline mutations in each BXD were assigned to COSMIC SBS mutation
signatures using SigPro�lerExtractor [29]. After grouping BXDs by their genotypes at rs27509845  and rs46276051 ,
we calculated the fraction of mutations in each group that was attributed to each signature. The proposed etiologies of
each mutation signature are: SBS1 (spontaneous deamination of methylated cytosine nucleotides at CpG contexts),
SBS5 (unknown, clock-like signature), SBS18 (damage by reactive oxygen species, related to SBS36 and defective base-
excision repair due to loss-of-function mutations in MUTYH), and SBS30 (defective base-excision repair due to NTHL1
mutations).

To explore the e�ects of the two mutator loci in other inbred laboratory mice, we also compared the
germline mutation spectra of Sanger Mouse Genomes Project (MGP) strains [31]. Dumont [18]
previously identi�ed germline mutations that were private to each of the 29 MGP strains; these
private variants likely represent recent de novo mutations (Figure 3—�gure supplement 2). Only two
of the MGP strains possess D genotypes at both the chromosome 4 and chromosome 6 mutator loci:
DBA/1J and DBA/2J. As before, we tested for epistasis in the MGP strains by �tting two linear models
predicting C>A mutation counts as a function of genotypes at the two mutator loci. A model
incorporating an interaction term did not �t the MGP data signi�cantly better than a model with
additive e�ects alone (p = 0.806), so we are unable to con�rm the signal of epistasis; however, this
may be due to the smaller number of MGP strains with de novo germline mutation data.

Some of the candidate mutator alleles are segregating in wild mice



To determine whether the candidate mutator alleles on chromosome 6 were segregating in natural
populations, we queried previously published sequencing data generated from 67 wild-derived mice
[32]. These data include three subspecies of Mus musculus, as well as the outgroup Mus spretus. We
found that the Ogg1 D allele was segregating at an allele frequency of 0.259 in Mus musculus
domesticus, the species from which C57BL/6J and DBA/2J derive the majority of their genomes [33],
and was �xed in Mus musculus musculus, Mus musculus castaneus, and the outgroup Mus spretus
(Figure 3-�gure supplement 3). The Setmar p.Ser273Arg D allele was also present at an allele
frequency of 0.37 in Mus musculus domesticus, while D alleles at the Setmar p.Leu103Phe variant
were not observed in any wild Mus musculus domesticus animals. D alleles at the Mbd4 p.Asp129Asn
variant were also absent from all wild mouse populations (Figure 3-�gure supplement 3).

Discussion

Epistasis between germline mutator alleles

We have identi�ed a locus on chromosome 6 that ampli�es a C>A germline mutator phenotype in the
BXDs, a family of inbred mice derived from the laboratory strains DBA/2J and C57BL/6J. DBA/2J (D)
alleles at this locus have no signi�cant e�ect on C>A mutation rates in mice that also harbor “wild-
type” C57BL/6J (B) alleles at a previously discovered mutator locus on chromosome 4 [2]. However,
mice with D alleles at both loci have even higher mutation rates than those with D alleles at the
chromosome 4 mutator locus alone (Figure 3). Epistatic interactions between mutator alleles have
been previously documented in yeast [34] and in human cell lines [35], but never to our knowledge in
a whole-animal context.

Importantly, we discovered epistasis between germline mutator alleles in an unnatural population of
model organisms that have been inbred by brother-sister mating in a highly controlled laboratory
environment [3]. This breeding setup has likely attenuated the e�ects of natural selection on all but
the most deleterious alleles [19], and may have facilitated the �xation of large-e�ect mutator alleles
that would be less common in wild mice. Without �ne-mapping the chromosome 6 mutator allele,
however, we are unable to trace its origin to either a captive breeding colony of laboratory mice or a
wild, outbreeding Mus musculus population. If the mutator allele on chromosome 6 has even a weak
deleterious �tness, there might be a greater likelihood that it arose in captivity. Indeed, if purifying
selection is required to keep mutation rates low, mutational pressure might cause mutation rates to
rise in just a few generations of relaxed selection. This dynamic may explain the recent discovery of a
large-e�ect mutator allele in a rhesus macaque research colony [13], as well as the observation that
domesticated animals tend to have higher mutation rates than those in the wild [36]. Ultimately,
although we have not conclusively �ne-mapped the chromosome 6 mutator locus to a causal variant,
we argue that nonsynonymous or regulatory variants in the DNA glycosylase Ogg1 are the best
candidates.

Protein-coding genes that may underlie the chromosome 6 mutator
locus

Five protein-coding genes involved in DNA repair overlap the C>A mutator locus on chromosome 6:
Ogg1, a glycosylase that excises the oxidative DNA lesion 8-oxoguanine (8-oxoG) [4], Setmar, a histone
methyltransferase involved in non-homologous end joining (NHEJ) of double-stranded breaks (DSBs)
[37,38], Fancd2, and Rad18. One other DNA repair gene, Mbd4, lies just outside of the 90% bootstrap
con�dence interval on chromosome 6 (but within a 10 Mbp interval around the peak AMSD marker).
We are unable to conclusively determine that one or more of these genes harbors a causal variant
underlying the observed C>A mutator phenotype, but we believe that Ogg1 is the most plausible
candidate. Ogg1 is a member of the same base-excision repair pathway as Mutyh (the gene that likely
underlies the chromosome 4 mutator locus), contains a nonsynonymous �xed di�erence between the



C57BL/6J and DBA/2J parental strains, and appears to be regulated by cis-eQTLs across a number of
tissues within the BXD cohort.

The C57BL/6J and DBA/2J Setmar coding sequences di�er by two missense variants (Table 1), one of
which is predicted to be deleterious by in silico tools. The primate SETMAR ortholog is involved in NHEJ
of double-strand breaks, but its role in DNA repair appears to depend on the function of both a SET
methyltransferase domain and a Mariner-family transposase domain [38,39,40]. Since the murine
Setmar ortholog lacks the latter element, and because primate SETMAR is involved in a DNA repair
process that is not expected to a�ect the rate of C>A mutations, we believe it is unlikely to underlie
the epistatic interaction between the chromosome 4 and 6 mutator loci in the BXDs (Supplementary
Information). Moreover, we did not observe any signi�cant cis-eQTLs for Setmar across a variety of
tissues in the BXD cohort (Table supplement 1). None of the remaining DNA repair genes (Fancd2 or
Rad18) contains a nonsynonymous �xed di�erence between the C57BL/6J and DBA/2J parental
strains, and none appear to be regulated by cis-eQTLs that would feasibly lead to a germline C>A
mutator phenotype (Table supplement 1); the only signi�cant cis-eQTL we observed was for Fancd2 in
gastrointestinal tissue, at which D alleles actually led to increased expression.

An Ogg1 mutator allele might impair the excision of 8-oxoguanine
lesions

Ogg1 is a member of the same base-excision repair (BER) pathway as Mutyh, the protein-coding gene
we previously implicated as harboring mutator alleles at the locus on chromosome 4 [4]. Each of these
genes has a distinct role in the BER response to oxidative DNA damage, and thereby the prevention of
C>A mutations [41,42]. Following damage by reactive oxygen species, Ogg1 is able to recognize and
remove 8-oxoguanine lesions that are base-paired with cytosine nucleotides; once 8-oxoG is excised,
other members of the BER pathway are mobilized to restore a proper G:C base pair at the site. If an 8-
oxoG lesion is not removed before the cell enters S-phase, adenine can be mis-incorporated opposite
8-oxoG during DNA replication [41]. If this occurs, Mutyh can excise the mispaired adenine, leaving a
one-nucleotide gap that is processed and �lled with a cytosine by other BER proteins. The resulting
C:8-oxoG base pair can then be “returned” to Ogg1 for excision and repair. Defects in the BER
response to oxidative damage lead to signi�cantly elevated rates of C>A mutation. For example, triple-
knockout (KO) mice lacking Ogg1, Mutyh, and Mth1 (which encodes an enzyme that prevents 8-oxo-
dGTP from being incorporated during DNA synthesis [43]) accumulate a 100-fold excess of 8-oxoG in
their gonadal cells [42]. Almost 99% of de novo germline mutations in the Ogg1/Mutyh/Mth1 triple KO
mice are C>A transversions, demonstrating the clear role of 8-oxoG repair in preventing C>A
mutation. Additionally, missense mutations and loss-of-heterozygosity in Ogg1 have been associated
with increased risk of human cancer [44,45], and copy-number losses of either Ogg1 or Mutyh are
linked to elevated rates of spontaneous C>A mutation in human neuroblastoma [46].

Nonsynonymous mutations may underlie the chromosome 6 mutator
phenotype

The p.Thr95Ala Ogg1 missense variant is not predicted to be deleterious by the in silico tool SIFT [47],
and occurs at a nucleotide that is not particularly well-conserved across mammalian species (Table 1).
We also observe that the D allele at p.Thr95Ala is segregating at an allele frequency of approximately
26% among wild-derived Mus musculus domesticus animals, and is �xed in other wild populations of
Mus musculus musculus, Mus musculus castaneus, and Mus spretus . Although we would expect a
priori that Ogg1 de�ciency should lead to increased 8-oxoG accumulation and elevated C>A mutation
rates, these lines of evidence suggest that p.Thr95Ala is not highly deleterious on its own, and might
only exert a detectable e�ect on the BER gene network when Mutyh function is also impaired. It is
also possible that D alleles at Ogg1 lead to a very subtle increase in C>A mutation rates, and we are
simply underpowered to detect such a small mutation rate e�ect in the BXDs.



No indication of causal structural variation or mobile element insertions
near the chromosome 6 mutator locus

Although we argue above that Ogg1 is likely the the best candidate gene to explain the new BXD C>A
mutator phenotype, we cannot conclusively determine that the p.Thr95Ala missense mutation is a
causal allele. We previously hypothesized that Mutyh missense mutations on D haplotypes were
responsible for the large-e�ect C>A mutator phenotype we observed in the BXDs [2]. However,
subsequent long-read assemblies of several inbred laboratory mouse strains revealed that this
mutator phenotype might be caused by a ~5 kbp mobile element insertion (MEI) within the �rst intron
of Mutyh [28], which is associated with signi�cantly reduced expression of Mutyh in embryonic stem
cells. We queried the new high-quality assemblies for evidence of mobile elements or other large
structural variants (SVs) in the region surrounding the mutator locus on chromosome 6, but found no
similarly compelling evidence that either SVs or MEIs might underlie the mutator phenotype described
in this study.

Expression quantitative trait loci (eQTLs) might mediate germline mutator
phenotypes in the BXDs

We observed strong-e�ect cis-eQTLs for Ogg1 expression across a number of tissues in the BXDs
(Table supplement 1). In each of these tissue types, D genotypes were associated with decreased
expression of Ogg1. As mentioned above, new evidence from long-read genome assemblies has
demonstrated that an intronic mobile element insertion in Mutyh may be responsible for decreased
Mutyh expression, and therefore higher C>A mutation rates, in BXDs with D haplotypes at the
chromosome 4 mutator locus [28]. Taken together, these results raise the exciting possibility that the
mutator loci on both chromosome 4 and chromosome 6 lead to increased C>A mutation rates by
lowering the expression of DNA repair genes in the same base-excision repair network.

Mbd4 may bu�er the e�ects of Mutyh mutator alleles by triggering
apoptosis

As mentioned in the Results, Mbd4 lies just outside of the 90% bootstrap con�dence interval on
chromosome 6. Due to the uncertainties associated with bootstrap con�dence intervals in QTL
mapping [26], we have included a discussion of the evidence supporting Mbd4 as a causal gene
below.

Unlike the Ogg1 p.Thr95Ala mutation, the p.Asp129Asn variant in Mbd4 resides within an annotated
protein domain (the Mbd4 methyl-CpG binding domain), occurs at a nucleotide and amino acid
residue that are both well-conserved, and is predicted to be deleterious by SIFT [47] (Table 1). A
missense mutation that a�ects the homologous amino acid in humans (p.Asp142Gly in GRCh38/hg38)
is also present on a single haplotype in the Genome Aggregation Database (gnomAD) [48] and is
predicted by SIFT and Polyphen [49] to be “deleterious” and “probably_damaging” in human genomes,
respectively.

One puzzling observation is that loss-of-function mutations in Mbd4 are not typically associated with
C>A mutator phenotypes. Instead, Mbd4 de�ciency is usually implicated in C>T mutagenesis at CpG
sites, and we did not detect an excess of C>T mutations in BXDs with D alleles at the chromosome 6
mutator locus (Figure 3-�gure supplement 1). However, loss of function mutations in Mbd4 have also
been shown to exacerbate the e�ects of exogenous DNA damage agents. For example, mouse
embryonic �broblasts that harbor homozygous Mbd4 knockouts fail to undergo apoptosis following
treatment with a number of chemotherapeutics and mutagenic compounds [50]. Most of these
exogenous mutagens cause DNA damage that is normally repaired by mismatch repair (MMR)



machinery, but murine intestinal cells with biallelic Mbd4 LOF mutations also showed a reduced
apoptotic response to gamma irradiation, which is repaired independently of the MMR gene Mlh1
[51]. Homozygous loss of Mbd4 function also leads to accelerated intestinal tumor formation in mice
that harbor an Apc allele that predisposes them to intestinal neoplasia [52], and mice with biallelic
truncations of the Mbd4 coding sequence exhibit modestly increased mutation rates in colon cancer
cell lines, including increased C>A mutation rates in certain lines [53].

Together, these lines of evidence suggest that Mbd4 can modulate sensitivity to many types of
exogenous mutagens, potentially through its role in determining whether cells harboring DNA
damage should undergo apoptosis [50,51]. We speculate that in mice with de�cient 8-oxoguanine
repair — caused by a mutator allele in Mutyh, for example — reactive oxygen species (ROS) could
cause accumulation of DNA damage in the germline. If those germ cells harbor fully functional copies
of Mbd4, they might be able to trigger apoptosis and partially mitigate the e�ects of a Mutyh mutator
allele. However, mice with reduced activity of both Mbd4 and Mutyh may have a reduced ability to
initiate cell death in response to DNA damage; as a result, their germ cells may accumulate even
higher levels of ROS-mediated damage, leading to substantially elevated germline C>A mutation rates.

We anticipate that future experimental work will be able to more conclusively establish a mechanistic
explanation for the epistatic interaction between mutator loci described in this paper.

Strengths and limitations of the aggregate mutation spectrum
distance approach

Our aggregate mutation spectrum distance (AMSD) approach was able to identify a mutator allele that
escaped notice using quantitative trait locus (QTL) mapping. To more systematically compare the
power of AMSD and QTL mapping, we performed simulations under a variety of possible parameter
regimes. Overall, we found that AMSD and QTL mapping have similar power to detect mutator alleles
on haplotypes that each harbor tens or hundreds of de novo germline mutations (Figure 1-�gure
supplement 2). Nonetheless, only AMSD was able to discover the mutator locus on chromosome 6 in
the BXDs, demonstrating that it outperforms QTL mapping in certain experimental systems. For
example, simulations demonstrate that AMSD enjoys greater power than QTL mapping when
haplotypes carry variable numbers of mutations that can be leveraged for mutator mapping (Figure 1-
�gure supplement 3). Because the BXDs were generated in six breeding epochs over a period of
nearly 40 years, the oldest lines have accumulated orders of magnitude more mutations than the
youngest lines; these younger BXDs have much noisier mutation spectra as a result. While approaches
for QTL mapping typically weight the phenotypic measurements of each sample equally, AMSD
compares the aggregate mutation spectra of haplotypes at every locus, a property that likely
increased its power to detect mutators in the BXD dataset.

Another bene�t of the AMSD approach is that it obviates the need to perform separate association
tests for every possible -mer mutation type, and therefore the need to adjust signi�cance thresholds
for multiple tests. Since AMSD compares the complete mutation spectrum between haplotypes that
carry either allele at a site, it would also be well-powered to detect a mutator allele that exerted a
coordinated e�ect on multiple -mer mutation types (e.g., increased the rates of both C>T and C>A
mutations).

However, the AMSD method su�ers a handful of drawbacks when compared to QTL mapping. Popular
QTL mapping methods (such as R/qtl2 [54]) use linear models to test associations between genotypes
and phenotypes, enabling the inclusion of additive and interactive covariates, as well as kinship
matrices, in QTL scans. Although we have developed methods to account for inter-sample relatedness
in the AMSD approach (Materials and Methods), they are not as �exible as similar methods in QTL
mapping software. Additionally, the AMSD method assumes that mutator alleles a�ect a subset of -
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mer mutation types; if a mutator allele increased the rates of all mutation types equally on haplotypes
that carried it, AMSD would be unable to detect it.

Discovering mutator alleles in other experimental systems

Our discovery of a second BXD mutator allele underscores the power of recombinant inbred lines
(RILs) as a resource for dissecting the genetic architecture of germline mutation rates. Large
populations of RILs exist for many model organisms, and we anticipate that as whole-genome
sequencing becomes cheaper and cheaper, the AMSD method could be useful for future mutator
allele discovery outside of the BXDs. At the same time, RILs are a �nite resource that require
enormous investments of time and labor to construct. If germline mutator alleles are only detectable
in these highly unusual experimental populations, we are unlikely to discover more than a small
fraction of the mutator alleles that may exist in nature.

Fortunately, the approach introduced in this paper is readily adaptable to datasets beyond RILs.
Thousands of human pedigrees have been sequenced in an e�ort to precisely estimate the rate of
human de novo germline mutation [5,6,55], and as family sequencing has become a more common
step in the diagnosis of many congenital disorders, these datasets are growing on a daily basis. Large
cohorts of two- or three-generation families are an example of a regime in which AMSD could enjoy
high power; by pooling sparse mutation counts across many individuals who share the same
candidate mutator allele, even a subtle mutator signal could potentially rise above the noise of de
novo germline mutation rate estimates. We note, however, that the aggregate mutation spectrum
distance approach will require modi�cation before it can be successfully applied to cohorts of
outbred, sexually-reproducing individuals. AMSD assumes that individuals harbor one of two possible
genotypes at each marker, and does not yet account for heterozygous genotypes. As a result, our
method is currently applicable only to resources like the BXD RILs, in which individuals have been
inbred for su�ciently long that e�ectively all genotypes are homozygous.

Selection on germline mutator alleles will likely prevent large-e�ect mutators from reaching high allele
frequencies, but a subset may be detectable by sequencing a su�cient number of human trios [56].
Since germline mutators often seem to exert their e�ects on a small number of mutation types,
mutation spectrum analyses may have greater power to detect the genes that underlie heritable
mutation rate variation, even if each gene has only a modest e�ect on the overall mutation rate per
generation.

Materials and Methods

Identifying de novo germline mutations in the BXDs

The BXD resource currently comprises a total of 152 recombinant inbred lines (RILs). BXDs were
derived from either F2 or advanced intercrosses, and subsequently inbred by brother-sister mating
for up to 180 generations [3]. BXDs were generated in distinct breeding “epochs,” which were each
initiated with a distinct cross of C57BL/6J and DBA/2J parents; epochs 1, 2, 4, and 6 were derived from
F2 crosses, while epochs 3 and 5 were derived from advanced intercrosses [3]. Previously, we
analyzed whole-genome sequencing data from the BXDs and identi�ed candidate de novo germline
mutations in each line [2]. A detailed description of the methods used for DNA extraction, sequencing,
alignment, and variant processing, as well as the characteristics of the de novo mutations, are
available in a previous manuscript [2].

Brie�y, we identi�ed private single-nucleotide mutations in each BXD that were absent from all other
BXDs, as well as from the C57BL/6J and DBA/2J parents. We required each private variant to be meet
the following criteria:



genotyped as either homozygous or heterozygous for the alternate allele, with at least 90% of
sequencing reads supporting the alternate allele

supported by at least 10 sequencing reads

Phred-scaled genotype quality of at least 20

must not overlap regions of the genome annotated as segmental duplications or simple repeats in
GRCm38/mm10

must occur on a parental haplotype that was inherited by at least one other BXD at the same locus;
these other BXDs must be homozygous for the reference allele at the variant site

A new approach to discover germline mutator alleles

Calculating aggregate mutation spectrum distance

We developed a new approach to discover loci that a�ect the germline de novo mutation spectrum in
biparental RILs (Figure 1).

We assume that a collection of haplotypes has been genotyped at informative markers, and that de
novo germline mutations have been identi�ed on each haplotype.

At each informative marker, we divide haplotypes into two groups based on the parental allele that
they inherited. We then compute a -mer mutation spectrum using the aggregate mutation counts in
each haplotype group. The -mer mutation spectrum contains the frequency of every possible -mer

mutation type in a collection of mutations, and can be represented as a vector of size  after
collapsing by strand complement. For example, the 1-mer mutation spectrum is a 6-element vector
that contains the frequencies of C>T, C>G, C>A, A>G, A>T, and A>C mutations. Since C>T transitions at
CpG nucleotides are often caused by a distinct mechanism (spontaneous deamination of methylated
cytosine), we expand the 1-mer mutation spectrum to include a separate category for CpG>TpG
mutations [57].

At each marker, we then compute the cosine distance between the two aggregate spectra. The cosine
distance between two vectors  and  is de�ned as

where  and  are the  (or Euclidean) norms of  and , respectively. The cosine distance
metric has a number of favorable properties for comparing mutation spectra. Since it adjusts for the
magnitude of the two input vectors, cosine distance can be used to compare two spectra with
unequal total mutation counts (even if those total counts are relatively small). Additionally, by
calculating the cosine distance between mutation spectra, we avoid the need to perform separate
comparisons of mutation counts at each individual -mer mutation type.

Inspired by methods from QTL mapping [54,58], we use permutation tests to establish genome-wide
cosine distance thresholds. In each of  permutation trials, we randomly shu�e the per-haplotype
mutation data such that haplotype labels no longer correspond to the correct mutation counts. Using
the shu�ed mutation data, we perform a genome-wide scan as described above, and record the
maximum cosine distance observed at any locus. After  permutations (usually 10,000), we compute
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the  percentile of the distribution of maximum statistics, and use that percentile value as a
genome-wide signi�cance threshold (for example, at ).

Estimating con�dence intervals around AMSD peaks

If we identi�ed an adjusted cosine distance peak on a particular chromosome, we used a bootstrap
resampling approach [59] to estimate con�dence intervals. In each of  trials, we
resampled the mutation spectrum data and corresponding marker genotypes (on the chromosome of
interest) with replacement. Using those resampled spectra and genotypes, we performed an
aggregate mutation spectrum distance scan on the chromosome of interest and recorded the position
of the marker with the largest adjusted cosine distance value. We then de�ned a 90% con�dence
interval by �nding two marker locations between which 90% of all  bootstrap samples produced a
peak cosine distance value. In other words, we estimated the bounds of the 90% con�dence interval
by �nding the markers that de�ned the 5th and 95th percentiles of the distribution of maximum
adjusted cosine distance values across  bootstrap trials. We note, however, that the bootstrap can
exhibit poor performance in QTL mapping studies [26]; namely, bootstrap con�dence intervals tend to
be larger than those estimated using either a “LOD drop” method or a Bayes credible interval, and can
exhibit poorer-than-expected coverage (a measure of whether the con�dence interval contains the
true QTL location).

Accounting for relatedness between strains

We expect each BXD to derive approximately 50% of its genome from C57BL/6J and 50% from DBA/2J.
As a result, every pair of BXDs will likely have identical genotypes at a fraction of markers. Pairs of
more genetically similar BXDs may also have more similar mutation spectra, potentially due to shared
polygenic e�ects on the mutation process. Therefore, at a given marker, if the BXDs that inherited D
alleles are more genetically dissimilar from those that inherited B alleles (considering all loci
throughout the genome in our measurement of genetic similarity), we might expect the aggregate
mutation spectra in the two groups to also be more dissimilar.

We implemented a simple approach to account for these potential issues of relatedness. At each
marker , we divide BXD haplotypes into two groups based on the parental allele they inherited. As
before, we �rst compute the aggregate mutation spectrum in each group of haplotypes and calculate
the cosine distance between the two aggregate spectra ( ). Then, within each group of haplotypes,

we calculate the allele frequency of the D allele at every marker along the genome to obtain a vector
of length , where  is the number of genotyped markers. To quantify the genetic similarity between
the two groups of haplotypes, we calculate the Pearson correlation coe�cient  between the two
vectors of marker-wide D allele frequencies.

Put another way, at every marker  along the genome, we divide BXD haplotypes into two groups and

compute two metrics:  (the cosine distance between the two groups’ aggregate spectra) and  (the

correlation between genome-wide D allele frequencies in the two groups). To control for the potential
e�ects of genetic similarity on cosine distances, we regress  on  for

all  markers using an ordinary least-squares model. We then use the residuals from the �tted model
as the “adjusted” cosine distance values for each marker. If genome-wide genetic similarity between
haplotypes perfectly predicts cosine distances at each marker, these residuals will all be 0 (or very
close to 0). If genome-wide genetic similarity has no predictive power, the residuals will simply
represent the di�erence between the observed cosine distance at a single marker and the marker-
wide mean of cosine distances.

Accounting for BXD population structure due to breeding epochs
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The current BXD family was generated in six breeding “epochs.” As discussed previously, each epoch
was initiated with a distinct cross of C57BL/6J and DBA/2J parents; BXDs in four of the epochs were
generated following F2 crosses of C57BL/6J and DBA/2J, and BXDs in the other two were generated
following advanced intercrosses. Due to this breeding approach the BXD epochs di�er from each
other in a few important ways. For example, BXDs derived in epochs 3 and 5 (i.e., from advanced
intercross) harbor larger numbers of �xed recombination breakpoints than those from epochs 1, 2, 4,
and 6 [3]. Although the C57BL/6J and DBA/2J parents used to initialize each epoch were completely
inbred, they each possessed a small number unique de novo germline mutations that were
subsequently inherited by many of their o�spring. A number of these “epoch-speci�c” variants have
also been linked to phenotypic variation observed between BXDs from di�erent epochs [3,60,61,62].

To account for potential population structure, as well as these epoch-speci�c e�ects, we introduced
the ability to perform strati�ed permutation tests in the aggregate mutation spectrum distance
approach. Normally, in each of N permutations we shu�e the per-haplotype mutation spectrum data
such that haplotype labels no longer correspond to the correct mutation spectra (i.e., shu�e mutation
spectra across epochs). In the strati�ed approach, we instead shu�e per-haplotype mutation data
within epochs, preserving epoch structure while still enabling mutation spectra permutations.

We used this epoch-aware approach for all permutation tests presented in this manuscript.

Implementation and source code

The aggregate mutation spectrum distance method was implemented in Python, and relies heavily on
the following Python libraries: numpy , pandas , matplotlib , scikit-learn , pandera , 
seaborn , and numba  [63,64,65,66,67,68,69].

The code underlying AMSD, as well as documentation of the method, is available on GitHub
(https://github.com/quinlan-lab/proj-mutator-mapping). We have also deposited a reproducible
Snakemake [70] work�ow for running reproducing all analyses and �gures presented in the
manuscript.

Simulations to assess the power of the aggregate mutation spectrum
distance approach

We performed a series of simple simulations to estimate our power to detect alleles that a�ect the
germline mutation spectrum using the aggregate mutation spectrum distance method.

Simulating genotypes

First, we simulate genotypes on a population of haplotypes at a collection of sites. We de�ne a matrix 
 of size , where  is the number of sites and  is the number of haplotypes. We assume that

every site is biallelic, and that the minor allele frequency at every site is 0.5. For every entry , we

take a single draw from a uniform distribution in the interval . If the value of that draw is less
than 0.5, we assign the value of  to be . Otherwise, we assign the value of  to be .

De�ning expected mutation type probabilities

Next, we de�ne a vector of 1-mer mutation probabilities:

G (s, h) s h

Gi,j

[0.0, 1.0)
Gi,j 1 Gi,j 0

P = (0.29,  0.17,  0.12,  0.075,  0.1,  0.075,  0.17)



These probabilities sum to 1 and roughly correspond to the expected frequencies of C>T, CpG>TpG,
C>A, C>G, A>T, A>C, and A>G de novo germline mutations in mice, respectively [9]. If we are simulating
the 3-mer mutation spectrum, we modify the vector of mutation probabilities  to be length 96, and

assign every 3-mer mutation type a value of , where  is the probability of the “central” mutation

type associated with the 3-mer mutation type. In other words, each of the 16 possible NCN>NTN 3-

mer mutation types would be assigned a mutation probability of . We then

generate a vector of lambda values by scaling the mutation probabilities by the number of mutations
we wish to simulate ( ):

We also create a second vector of lambda values ( ), in which we multiply the  value of a single
mutation type by the mutator e�ect size .

Rather than simulate the same mean number of mutations ( ) on every haplotype, we also
performed a series of simulations in which the mean number of mutations on each haplotype was
allowed to vary. The BXD RILs were inbred for variable numbers of generations, and each BXD
therefore accumulated a variable number of de novo germline mutations [2]. To more closely
approximate the BXD haplotypes, we performed simulations in which the number of mutations ( )
on each haplotype was drawn from a uniform distribution from  to . In other words, we created
a vector of mutation counts  containing  evenly-spaced integers from  to , where  is the
number of simulated haplotypes. Thus, if we simulated between 100 and 2,000 mutations on 50

haplotypes, the th entry of  would be . Each haplotype’s mean number of

mutations was then assigned by looking up the haplotype’s index  in .

In our simulations, we assume that genotypes at a single site (the “mutator locus”) are associated with
variation in the mutation spectrum. That is, at a single site , all of the haplotypes with  alleles
should have elevated rates of a particular mutation type and draw their mutation counts from ,
while all of the haplotypes with  alleles should have “wild-type” rates of that mutation type and draw
their mutation counts from . We therefore pick a random site  to be the “mutator locus,” and
identify the indices of haplotypes in  that were assigned  alleles at . We call these indices .

Simulating mutation spectra

To simulate the mutation spectrum on our toy population of haplotypes, we de�ne a matrix  of size 

, where  (or if  and we include CpG>TpG mutations, ).

Then, we populate the matrix  separately for mutator and wild-type haplotypes. For every row  in
the matrix (i.e., for every haplotype), we �rst ask if  is in  (that is, if the haplotype at index  was
assigned a  allele at the “mutator locus”). If so, we set the values of  to be the results of a single
Poisson draw from . If row  is not in , we set the values of  to be the results of a single
Poisson draw from .

Assessing power to detect a simulated mutator allele using AMSD

For each combination of parameters (number of simulated haplotypes, number of simulated markers,
mutator e�ect size, etc.), we run 100 independent trials. In each trial, we simulate the genotype matrix

 and the mutation counts . We calculate a “focal” cosine distance as the cosine distance between
the aggregate mutation spectra of haplotypes with either genotype at  (the site at which we
arti�cially simulated an association between genotypes and mutation spectrum variation). We then
perform an aggregate mutation spectrum distance scan using  permutations. If fewer
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than 5% of the  permutations produced a cosine distance greater than or equal to the focal
distance, we say that the approach successfully identi�ed the mutator allele in that trial.

Assessing power to detect a simulated mutator allele using quantitative
trait locus (QTL) mapping

Using simulated data, we also assessed the power of traditional quantitative trait locus (QTL) mapping
to detect a locus associated with mutation spectrum variation. As described above, we simulated both
genotype and mutation spectra for a population of haplotypes under various conditions (number of
mutations per haplotype, mutator e�ect size, etc.). Using those simulated data, we used R/qtl2 [54] to
perform a genome scan for signi�cant QTL as follows; we assume that the simulated genotype
markers are evenly spaced (in physical Mbp coordinates) on a single chromosome. First, we calculate

the fraction of each haplotype’s de novo mutations that belong to each of the  possible -
mer mutation types. We then convert the simulated genotypes at each marker to genotype
probabilities using the calc_genoprob  function in R/qtl2, with map_function = "c-f"  and 
error_prob = 0 . For every -mer mutation type, we use genotype probabilities and per-haplotype

mutation fractions to perform a scan for QTL with the scan1  function; to make the results more
comparable to those from the AMSD method, we do not include any covariates or kinship matrices in
these QTL scans. We then use the scan1perm  function to perform 1,000 permutations of the per-
haplotype mutation fractions and calculate log-odds (LOD) thresholds for signi�cance. We consider
the QTL scan to be “successful” if it produces a LOD score above the signi�cance threshold (de�ned
using ) for the marker at which we simulated an association with mutation spectrum

variation.

Note: In our simulations, we augment the mutation rate of a single -mer mutation type on
haplotypes carrying the simulated mutator allele. However, in an experimental setting, we would not
expect to have a priori knowledge of the mutation type a�ected by the mutator. Thus, by using an
alpha threshold of 0.05 in our simulations, we would likely over-estimate the power of QTL mapping
for detecting the mutator. Since we would need to perform 7 separate QTL scans (one for each 1-mer
mutation type plus CpG>TpG) in an experimental setting, we calculate QTL LOD thresholds at a
Bonferroni-corrected alpha value of .

Applying the aggregate mutation spectrum distance method to the
BXDs

We downloaded previously-generated BXD de novo germline mutation data from the GitHub
repository associated with our previous manuscript, which was also archived at Zenodo [2,71,72], and
downloaded a CSV �le of BXD genotypes at ~7,300 informative markers from GeneNetwork [27,73].
We also downloaded relevant metadata about each BXD from the manuscript describing the updated
BXD resource [3]. These �les are included in the GitHub repository associated with this manuscript.

As in our previous manuscript [2], we included mutation data from a subset of the 152 BXDs in our
aggregate mutation spectrum distance scans. Speci�cally, we removed BXDs that were backcrossed to
a C57BL/6J or DBA/2J parent at any point during the inbreeding process (usually, in order to rescue
that BXD from inbreeding depression [3]). We also removed BXD68 from our genome-wide scans,
since we previously discovered a hyper-mutator phenotype in that line; the C>A germline mutation
rate in BXD68 is over 5 times the population mean, likely due to a private deleterious nonsynonymous
mutation in Mutyh [2]. In our previous manuscript, we removed any BXDs that had been inbred for
fewer than 20 generations, as it takes approximately 20 generations of strict brother-sister mating for
an RIL genome to become >98% homozygous [74]. As a result, any potential mutator allele would
almost certainly be either �xed or lost after 20 generations; if �xed, the allele would remain linked to
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any excess mutations it causes for the duration of subsequent inbreeding. In other words, the de
novo mutations present in the genome of a “young” BXD (i.e., a BXD that was inbred for fewer than 20
generations) would not re�ect a mutator allele’s activity as strongly as the mutations present in the
genome of a much older BXD. This presented a challenge when we used quantitative trait locus
mapping to discover mutator alleles in our previous manuscript, since the phenotypes (i.e., C>A
mutation rates) of young and old BXDs were weighted equally; thus, we simply removed the younger
BXDs from our analysis to avoid using their especially noisy mutation spectra. Since AMSD computes
an aggregate mutation spectrum using all BXDs that inherited a particular allele at a locus, and can
overcome the sparsity and noise of individual mutation spectra, we chose to include these younger
BXDs in our genome-wide scans in this study.

In total, we included 117 BXDs in our genome-wide scans.

Identifying candidate single-nucleotide mutator alleles overlapping
the chromosome 6 peak

We investigated the region implicated by our aggregate mutation spectrum distance approach on
chromosome 6 by subsetting the joint-genotyped BXD VCF �le (European Nucleotide Archive
accession PRJEB45429 [75]) using bcftools  [76]. We de�ned the candidate interval surrounding the
cosine distance peak on chromosome 6 as the 90% bootstrap con�dence interval (extending from
approximately 95 Mbp to 114 Mbp). To predict the functional impacts of both single-nucleotide
variants and indels on splicing, protein structure, etc., we annotated variants in the BXD VCF using the
following snpEff  [77] command:

 java -Xmx16g -jar /path/to/snpeff/jarfile GRCm38.75 /path/to/bxd/vcf > 
/path/to/uncompressed/output/vcf

and used cyvcf2  [78] to iterate over the annotated VCF �le in order to identify nonsynonymous
�xed di�erences between the parental C57BL/6J and DBA/2J strains.

Identifying candidate structural variant alleles overlapping the
chromosome 6 peak

We downloaded summary VCFs containing insertion, deletion and inversion structural variants
(identi�ed via high-quality, long-read assembly of inbred laboratory mouse strains [28]) from the
Zenodo link associated with the Ferraj et al. manuscript: https://doi.org/10.5281/zenodo.7644286.

We then downloaded a TSV �le containing RefSeq gene predictions in GRCm39/mm39 from the UCSC
Table Browser [79], and used the bx-python  library [80] to intersect the interval spanned by each
structural variant with the intervals spanned by the txStart  and txEnd  of every RefSeq entry.

We queried all structural variants within the 90% bootstrap con�dence interval on chromosome 6.

Extracting mutation signatures

We used SigPro�lerExtractor (v.1.1.21) [30] to extract mutation signatures from the BXD mutation
data. After converting the BXD mutation data to the “matrix” input format expected by
SigPro�lerExtractor, we ran the sigProfilerExtractor  method as follows:



Comparing mutation spectra between Mouse Genomes Project strains

We downloaded mutation data from a previously published analysis [18] (Supplementary File 1, Excel
Table S3) that identi�ed strain-private mutations in 29 strains that were originally whole-genome
sequenced as part of the Sanger Mouse Genomes (MGP) project [31]. When comparing counts of each
mutation type between MGP strains that harbored either D or B alleles at the chromosome 4 or
chromosome 6 mutator loci, we adjusted mutation counts by the number of callable A, T, C, or G
nucleotides in each strain as described previously [2].

Querying GeneNetwork for eQTLs at the mutator locus

We used the online GeneNetwork resource [27], which contains array- and RNA-seq-derived
expression measurements in a wide variety of tissues, to �nd cis-eQTLs for the DNA repair genes we
implicated under the cosine distance peak on chromosome 6. On the GeneNetwork homepage
(genenetwork.org), we selected the “BXD Family” Group and used the Type dropdown menu to select
each of the speci�c expression datasets described in Table 2. In the Get Any text box, we then
entered the listed gene name and clicked Search. After selecting the appropriate trait ID on the next
page, we used the Mapping Tools dropdown to run Hayley-Knott regression [81] with default
parameters: 1,000 permutations, interval mapping, no cofactors, and WGS-based genotypes (2022).

If we discovered a signi�cant cis-eQTL for the gene of interest (that is, a locus on chromosome 6 with
an LRS greater than or equal to the “signi�cant LRS” genome-wide threshold), we then performed a
second genome-wide association test for the trait of interest using GEMMA [82] with the following
parameters: WGS-based marker genotypes, a minor allele frequency threshold of 0.05, and leave-one-
chromosome-out (LOCO). By using both Haley-Knott regression and GEMMA, we could �rst discover
loci that exceeded a genome-wide LRS threshold, and then more precisely estimate the e�ect of those
loci on gene expression [83].

The exact names of the expression datasets we used for each tissue are shown in Table 2 below:

Table 2:  Names of gene expression datasets used for each tissue type on GeneNetwork

Tissue name Complete name of GeneNetwork expression data

Kidney Mouse kidney M430v2 Sex Balanced (Aug06) RMA

Gastrointestinal
UTHSC Mouse BXD Gastrointestinal Affy MoGene 
1.0 ST Gene Level (Apr14) RMA

# install the mm10 mouse reference data 
genInstall.install('mm10') 

 
# run mutation signature extraction 
sig.sigProfilerExtractor( 
    'matrix',  
    /path/to/output/directory,  
    /path/to/input/mutations,  
    maximum_signatures=10,  
    nmf_replicates=100,  
    opportunity_genome="mm10",  
)



Tissue name Complete name of GeneNetwork expression data

Hematopoetic stem cells UMCG Stem Cells ILM6v1.1 (Apr09) transformed

Spleen UTHSC Affy MoGene 1.0 ST Spleen (Dec10) RMA

Liver UTHSC BXD Liver RNA-Seq Avg (Oct19) TPM Log2

Heart
NHLBI BXD All Ages Heart RNA-Seq (Nov20) TMP 
Log2 **

Hippocampus Hippocampus Consortium M430v2 (Jun06) RMA

Calculating the frequencies of candidate mutator alleles in wild mice

To determine the frequencies of the Ogg1 and Setmar nonsynonymous mutations in other
populations of mice, we queried a VCF �le containing genome-wide variation in 67 wild-derived mice
from four species of Mus [32]. We calculated the allele frequency of each nonsynonymous mutation in
each of the four species or subspecies (Mus musculus domesticus, Mus musculus musculus, Mus
musculus castaneus, and Mus spretus), including genotypes that met the following criteria:

supported by at least 10 sequencing reads

Phred-scaled genotype quality of at least 20

Testing for epistasis between the two mutator loci

To test for statistical epistasis between the mutator loci on chromosome 4 and chromosome 6, we
modeled C>A mutation rates in the BXDs as a function of genotypes at either locus. Speci�cally, we
tested for statistical interaction between genotypes by �tting a generalized linear model in the R
statistical language as follows:

In this model, Count  is the count of C>A de novo mutations observed in each BXD. ADJ_AGE  is the
product of the number of “callable” cytosine/guanine nucleotides in each BXD (i.e., the total number of
cytosines/guanines covered by at least 10 sequencing reads) and the number of generations for which
the BXD was inbred. We included the logarithm of ADJ_AGE  as an “o�set” in order to model the
response variable as a rate (expressed per base-pair, per generation) rather than an absolute count;
the BXDs di�er in both their durations of inbreeding and the proportions of their genomes that were
sequenced to su�cient depth, which in�uences the number of mutations we observe in each BXD.
The Genotype_A  and Genotype_B  terms represent the genotypes of BXDs at markers 
rs27509845  and rs46276051  (the markers with peak cosine distances on chromosomes 4 and 6 in

the two aggregate mutation spectrum distance scans). We limited our analysis to the n = 108 BXDs
that were homozygous at both sites, allowing us to model genotypes at either locus as binary
variables (“B” or “D”). Using analysis of variance (ANOVA), we then compared the model including an
interaction e�ect to a model including only additive e�ects:

m1 <- glm(Count ~ offset(log(ADJ_AGE)) + Genotype_A * Genotype_B, data = 
data, family=poisson())

m2 <- glm(Count ~ offset(log(ADJ_AGE)) + Genotype_A + Genotype_B, data = 
data, family=poisson())



If model m1  is a signi�cantly better �t to the data than m2 , we can reject the null hypothesis that the
e�ect of D genotypes at both markers is equal to the sum of the marginal e�ects of D genotypes at
either rs27509845  or rs46276051 . In other words, if m1  is a better �t than m2 , then the
combined e�ect of D genotypes at both markers is non-additive, and indicative of statistical epistasis.

We tested for epistasis in the Sanger Mouse Genomes Project (MGP) strains using a nearly-identical
approach. In this analysis, we �t two models as follows:

where Count  is the count of strain-private C>A mutations observed in each MGP strain [18]. The 
CALLABLE_C  term represents the total number of cytosine and guanine nucleotides that were

accessible for mutation calling in each strain, and the Genotype_A  and Genotype_B  terms
represent MGP genotypes at the chromosome 4 and chromosome 6 mutator loci, respectively. We
compared the two models using ANOVA as described above.
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anova(m1, m2, test="Chisq")

m1 <- glm(Count ~ offset(log(CALLABLE_C)) + Genotype_A * Genotype_B, data = 
data, family=poisson())  
 

m2 <- glm(Count ~ offset(log(CALLABLE_C)) + Genotype_A + Genotype_B, data = 
data, family=poisson())



Supplementary information

Missense mutations in Setmar are unlikely to contribute to epistasis
in the BXDs

Unlike Ogg1, Setmar does not participate directly in base-excision repair, though its primate ortholog
plays an indirect role in the repair of double-stranded DNA breaks via non-homologous end joining
(NHEJ). In anthropoid primates, SETMAR encodes a fusion of two functional domains: a SET domain-
containing histone methyltransferase and a transposase domain from the Mariner family (MAR) [84];
the mouse Setmar ortholog only encodes the histone methyltransferase domain. In human cell lines,
SETMAR localizes to induced double-strand breaks (DSBs) and dimethylates nearby H3K36, which
promotes the recruitment of DNA repair components involved in NHEJ to the DSB [37]. There is also
evidence that overexpression of SETMAR (also known as Metnase) improves the e�ciency of NHEJ [38]
and leads to increased cell survival following exposure to ionizing radiation [38]. Point mutations in
either the SET or MAR domains signi�cantly reduced the ability of SETMAR to promote non-
homologous end joining and DNA repair [38,39,40], suggesting that both domains are needed for its
role in DNA repair. Another study found that overexpression of the isolated SET and MAR domains,
but not of wild-type SETMAR, had a modest e�ect on NHEJ repair; overexpression of the SET domain
slightly decreased NHEJ repair of a linearized plasmid in human cells, while overexpression of the
Mariner-derived domain increased NHEJ relative to controls [85].

Taken together, these results suggest that both the SET and transposase domains of primate SETMAR
are important for SETMAR-mediated DNA repair. The p.Leu103Phe missense mutation that
di�erentiates C57BL/6J and DBA/2J (Table 1) resides within the Setmar pre-SET domain and occurs at
an amino acid residue that is predicted to be deleterious by SIFT [47]. However, since the mouse
Setmar ortholog lacks the Mariner-derived domain, we believe that the the p.Leu103Phe or
p.Ser273Arg missense mutations are unlikely to a�ect C>A mutation rates in the BXDs. Moreover, we
believe that the documented mutator phenotypes associated with Ogg1, as well as that gene’s known
role in base-excision repair, make it more likely candidate to underlie the epistatic interaction with
Mutyh we observed in this study.

Supplementary Figures



Figure 1-�gure supplement 1:  Simulations to assess the power of the aggregate mutation spectrum distance
method. In each of 50 trials, we simulated genotypes at 1,000 biallelic loci on a toy population of either 50 or 100
haplotypes as follows. At every locus on every haplotype, we drew a single �oating point value from a uniform
distribution . If that value was less than or equal to 0.5, we set the allele to be “A”; otherwise, we set the allele to be
“B”. In each trial, we also simulated de novo germline mutations on the population of haplotypes, such that at a single
locus , we augmented the mutation rate of a particular -mer by the speci�ed e�ect size (an e�ect size of 1.5 indicates
a 50% increase in the mutation rate) on haplotypes carrying “A” alleles. We then applied the aggregate mutation
spectrum distance method to these simulated data and asked if the adjusted cosine distance at locus  was greater
than expected by chance. Given a speci�c combination of parameters, the y-axis denotes the fraction of 50 trials in
which the simulated mutator allele could be detected at a signi�cance threshold of p = 0.05. Shaded areas indicate the
95% bootstrap con�dence interval surrounding that estimate.
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Figure 1-�gure supplement 2:  Comparing power between the aggregate mutation spectrum distance method
and QTL mapping. In each of 50 trials, we simulated genotypes at 1,000 biallelic loci on a toy population of 100
haplotypes as follows. At every locus on every haplotype, we drew a single �oating point value from a uniform
distribution . If that value was less than or equal to 0.5, we set the allele to be “A”; otherwise, we set the allele to be
“B”. In each trial, we also simulated de novo germline mutations on the population of haplotypes, such that at a single
locus , we augmented the rate of the speci�ed mutation type by the speci�ed e�ect size (an e�ect size of 1.5 indicates
a 50% increase in the mutation rate) on haplotypes carrying “A” alleles. We then applied the aggregate mutation
spectrum distance method to these simulated data and asked if the adjusted cosine distance at locus  was greater
than expected by chance. Similarly, in each trial, we used R/qtl2 to perform a genome scan for QTL and asked if the log-
odds score at  was greater than expected by chance. Given a speci�c combination of parameters, the y-axis denotes
the fraction of 50 trials in which the simulated mutator allele could be detected at a signi�cance threshold of p = 0.05

(for AMSD) or at an alpha of  (for QTL mapping). Shaded areas indicate the 95% bootstrap con�dence interval

surrounding that estimate.
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Figure 1-�gure supplement 3:  Comparing power between the aggregate mutation spectrum distance method
and QTL mapping with variable counts of simulated mutations. In each of 50 trials, we simulated genotypes at
1,000 biallelic loci on a toy population of 50 or 100 haplotypes as follows. At every locus on every haplotype, we drew a
single �oating point value from a uniform distribution . If that value was less than or equal to 0.5, we set the allele
to be “A”; otherwise, we set the allele to be “B”. In each trial, we also simulated de novo germline mutations on the
population of haplotypes, such that at a single locus , we augmented the rate of the speci�ed mutation type by the
speci�ed e�ect size (an e�ect size of 1.5 indicates a 50% increase in the mutation rate) on haplotypes carrying “A”
alleles. To more closely approximate the BXD RILs, the mean number of simulated mutations on each haplotype was
allowed to vary by a factor of 20 (see Materials and Methods for more details). We then applied the aggregate mutation
spectrum distance method to these simulated data and asked if the adjusted cosine distance at locus  was greater
than expected by chance. Similarly, in each trial, we used R/qtl2 to perform a genome scan for QTL and asked if the log-
odds score at  was greater than expected by chance. Given a speci�c combination of parameters, the y-axis denotes
the fraction of 50 trials in which the simulated mutator allele could be detected at a signi�cance threshold of p = 0.05

(for AMSD) or at an alpha of  (for QTL mapping). Shaded areas indicate the 95% bootstrap con�dence interval

surrounding that estimate.

[0, 1)

gi

gi

gi

0.05
7



Figure 1-�gure supplement 4:  Comparing power between the aggregate mutation spectrum distance method
and QTL mapping with variable mutator allele frequencies. In each of 50 trials, we simulated genotypes at 1,000
biallelic loci on a toy population of 100 haplotypes as follows. At every locus on every haplotype, we drew a single
�oating point value from a uniform distribution . If that value was less than or equal to 0.5, we set the allele to be
“A”; otherwise, we set the allele to be “B”. To model the e�ects of mutator allele frequencies on AMSD and QTL power,
we allowed the expected frequency of “A” alleles at the mutator allele marker to be either 0.1, 0.25, or 0.5 in these
simulations. In each trial, we also simulated de novo germline mutations on the population of haplotypes, such that at a
single locus , we augmented the rate of the speci�ed mutation type by the speci�ed e�ect size (an e�ect size of 1.5
indicates a 50% increase in the mutation rate) on haplotypes carrying “A” alleles. We then applied the aggregate
mutation spectrum distance method to these simulated data and asked if the adjusted cosine distance at locus  was
greater than expected by chance. Similarly, in each trial, we used R/qtl2 to perform a genome scan for QTL and asked if
the log-odds score at  was greater than expected by chance. Given a speci�c combination of parameters, the y-axis
denotes the fraction of 50 trials in which the simulated mutator allele could be detected at a signi�cance threshold of p

= 0.05 (for AMSD) or at an alpha of  (for QTL mapping). Shaded areas indicate the 95% bootstrap con�dence interval

surrounding that estimate.
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Figure 2-�gure supplement 1:  Quantitative trait locus scans for mutation spectrum phenotypes. Using the BXDs
with D genotypes at rs27509845  (the marker with the highest cosine distance on chromosome 4; n = 66 BXDs, 42,171
total mutations), we used R/qtl2 to perform QTL scans for the fractions of each 1-mer mutation type. QTL scans also
included a kinship matrix (that contained the pairwise genetic similarity between each pair of BXDs, calculated using the
leave-one-chromosome-out method) as a random e�ect term using the kinship  keyword argument in the scan1
function. Plots show the log-odds (LOD) score at every genotyped marker in blue; the dotted black line represents the

genome-wide LOD signi�cance threshold (established using 1,000 permutations at an alpha of  to account for the

fact that 7 separate association tests were performed.)
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Figure 3-�gure supplement 1:  Mutation spectra comparison in BXD strains. Fractions of de novo germline
mutations in BXDs with either D or B genotypes at markers rs27509845  and rs46276051 , strati�ed by mutation
type.

Figure 3—�gure supplement 2:  Mutation spectra comparison in Sanger Mouse Genomes Project strains.
Fractions of de novo germline mutations in Sanger MGP strains with either D or B haplotypes at the chromosome 4 and
chromosome 6 mutator loci, strati�ed by mutation type.



Figure 3-�gure supplement 3:  Frequency of nonsynonymous DNA repair mutations in wild mice. Alternate allele
frequencies of each nonsynonymous DNA repair mutation overlapping the chromosome 6 mutator locus were
calculated in populations of wild-derived mice from Harr et al. [32]. Numbers of mice in each subpopulation are shown
in parentheses. Mmc (Mus musculus castaneus), Mmd (Mus musculus domesticus), Mmm (Mus musculus musculus),
and Ms (Mus spretus). The Mbd4 p.Asp129Asn mutation was not observed in any wild populations.

Supplementary Tables

Table supplement 1:  Signi�cant cis-eQTLs for DNA repair genes in various tissues identi�ed using GeneNetwork.

Gene name Tissue name
# BXDs with

expression data
Top signi�cant

marker

-log10(p) at top
signi�cant

marker
(GEMMA)

Additive e�ect
of D allele on

expression
(GEMMA)

Ogg1 Kidney 53
rsm100000041
88

12.89 -0.180

Ogg1 Liver 50
rsm100000041
88

13.57 -0.155

Ogg1 Spleen 79
rsm100000034
18

4.73 -0.056

Ogg1 Gastrointestinal 46 rs4173870 5.43 -0.048

Fancd2 Gastrointestinal 46
rsm100000041
99

8.60 0.133

Ogg1 Hippocampus 67
rsm100000041
88

16.50 -0.165

Rad18 Hippocampus 67
rsm100000034
63

6.32 0.068

Setmar Hippocampus 67 rs13478947 11.03 0.141



Gene name Tissue name
# BXDs with

expression data
Top signi�cant

marker

-log10(p) at top
signi�cant

marker
(GEMMA)

Additive e�ect
of D allele on

expression
(GEMMA)

Mbd4 Spleen 79
rsm100000041
99

6.05 0.071
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